United States Patent

US009256412B2

(12) 10) Patent No.: US 9,256,412 B2
GenevskKi et al. 45) Date of Patent: Feb. 9, 2016
(54) SCHEDULED AND QUARANTINED 2008/0141240 Al* 6/2008 Uthecccoovvvvecvennene 717/174
SOFTWARE DEPLOYMENT BASED ON 2010/0330971 Al* 12/2010 Selitseretal. 455/418
2011/0231552 Al* 9/2011 Carteretal. 709/226
DEPENDENCY ANALYSIS 2013/0067448 Al* 3/2013 Sannidhanam et al. 717/169
2013/0283252 Al* 10/2013 Mannarswamy et al. 717/168
(75) Inventors: Pavel Genevski, Sofia (BG); Georgi
Pavlov, Sofia (BG) OTHER PUBLICATIONS
(73) Assignee: SAP SE, Walldorf (DE) Google Developers; Google App Engine; Traffic Splitting; published
on-line Jun. 26, 2012 by Google Inc.; CA; USA; 3 pages (https://
(*) Notice: Subject to any disclaimer, the term of this developers.google.com/appengine/docs/adminconsole/trafficsplit-
patent is extended or adjusted under 35 ting).
U.S.C. 154(b) by 290 days.
* cited by examiner
(21) Appl. No.: 13/541,698
(22) Filed: Jul. 4, 2012 Primary Examiner — Duy Khuong Nguyen
(65) Prior Publication Data (57) ABSTRACT
US 2014/0013315 Al Jan. 9, 2014 A request to deploy a next version of a software component in
a cloud environment is received. An analysis of a number of
(51) Imt.ClL dependencies among software components of the cloud envi-
GO6F 9/44 (2006.01) ronment is received. Deployment of the next version of the
GO6F 9/445 (2006.01) component is scheduled based on the analysis. The next ver-
(52) US.CL sion of the software component is deployed in the cloud
CPC v GOGF 8/60 (2013.01) environment in accordance with the scheduled deployment.
(58) Field of Classification Search The next version of the software component is quarantined
CPC ... GO6F 8/65; GO6F 8/68; GOG6F 11/1433 until a predefined criteria is satisfied. In one aspect, the pre-
USPC oo 717/170-174 defined criteria is defined based on error rate of the next
See application file for complete search history. version of the software component. In a further aspect, the
predefined criteria is defined based on received analysis
(56) References Cited among the components. Upon satisfying the predefined cri-
teria, the next version of the software component is released
U.S. PATENT DOCUMENTS from the quarantine.
7,155,462 B1* 12/2006 Singhetal. 717/170
2006/0101457 Al* 5/2006 Zweifel etal. 717/174 11 Claims, 8 Drawing Sheets

/ 200

START
y 210

RECEIVE A REQUEST TO DEPLOY A NEXT VERSION OF A
SOFTWARE COMPONENT IN A CLOUD ENVIRONMENT

!

/220

RECEIVE AN ANALYSIS OF DEPENDENCIES AMONG
SOFTWARE COMPONENTS OF THE CLOUD ENVIRONMENT

!

/230

SCHEDULE DEPLOYMENT OF THE NEXT VERSION OF THE
SOFTWARE COMPONENT BASED ON THE ANALYSIS

|

/240

DEPLOY THE NEXT VERSION OF THE SOFTWARE
COMPONENT IN THE CLOUD ENVIRONMENT IN ACCORDANCE
WITH THE SCHEDULED DEPLOYMENT

!

/250

QUARANTINE THE VERSION OF THE SOFTWARE COMPONENT
UNTIL A PREDEFINED CRITERIA IS SATISFIED

!

/-260

UPON SATISFYING THE PREDEFINED CRITERIA, RELEASE
THE VERSION OF THE SOFTWARE COMPONENT FROM THE
QUARANTINE

US 9,256,412 B2

Sheet 1 of 8

Feb. 9, 2016

U.S. Patent

L WHO4LY1d INILNNY

gor

H3AINOHd WHO4LV1d FNILNNY

2l ano1o

SP1 43AINOYd WHO41V1d FNILNNY 40 SNOILYDINddY

b

NOILVOITddY

NOILVYOI1ddY

0tl
L,

NOILVYDITddV

N, 43NOLSND
40
081

Z, SNOILYOI'lddY

£, 43INO0LSNO
40
0zl
0, SNOILYOI1ddV

4, IANOCLSND
40
(113
X SNOILYOI1ddV

<, d3NOLSND
40
091
A SNOILYOITdd¥

I 'Old

U.S. Patent Feb. 9, 2016 Sheet 2 of 8 US 9,256,412 B2

/210

RECEIVE A REQUEST TO DEPLOY A NEXT VERSION OF A
SOFTWARE COMPONENT IN A CLOUD ENVIRONMENT

l /220

RECEIVE AN ANALYSIS OF DEPENDENCIES AMONG
SOFTWARE COMPONENTS OF THE CLOUD ENVIRONMENT

l /230

SCHEDULE DEPLOYMENT OF THE NEXT VERSION OF THE
SOFTWARE COMPONENT BASED ON THE ANALYSIS

l 240

DEPLOY THE NEXT VERSION OF THE SOFTWARE
COMPONENT IN THE CLOUD ENVIRONMENT IN ACCORDANCE
WITH THE SCHEDULED DEPLOYMENT

! 250

QUARANTINE THE VERSION OF THE SOFTWARE COMPONENT
UNTIL A PREDEFINED CRITERIA IS SATISFIED

l /260

UPON SATISFYING THE PREDEFINED CRITERIA, RELEASE
THE VERSION OF THE SOFTWARE COMPONENT FROM THE
QUARANTINE

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 3 of 8 US 9,256,412 B2

300
™
/310

RECEIVE DATA RELATED TO USAGE OF A CLOUD ENVIRONMENT,
INCLUDING A NUMBER OF REQUESTS AMONG A NUMBER OF SOFTWARE
COMPONENTS OF THE CLOUD ENVIRONMENT

l /320

CREATE A NUMBER OF VERTICES IN A GRAPH OF DEPENDENCIES
CORRESPONDING TO THE NUMBER OF SOFTWARE COMPONENTS OF
THE CLOUD ENVIRONMENT

l /330

BASED ON THE USAGE DATA, CATEGORIZE THE NUMBER OF REQUESTS
INTO ANUMBER OF REQUEST CATEGORIES BASED ON TYPES OF
RESOURCES REQUESTED BY THE CORRESPONDING REQUESTS

l 340

CREATE ANUMBER OF EDGES IN THE GRAPH OF DEPENDENCIES
CORRESPONDING TO THE NUMBER OF REQUEST CATEGORIES

l / 350

BASED ON THE USAGE DATA, CALCULATE A NUMBER OF WEIGHTS
BASED ON A FREQUENCY OF REQUESTS IN THE REQUEST CATEGORIES

l /360

ASSOCIATE THE NUMBER OF WEIGHTS WITH CORRESPONDING EDGES

END

FIG. 3

US 9,256,412 B2

Sheet 4 of 8

Feb. 9, 2016

U.S. Patent

¥ 'Old

ovy-]

d, ININOdWOD
owv\

8, ININOdNOD

O, ININOdWOD

V, ININOdNOD

4/ 00Y

U.S. Patent Feb. 9, 2016 Sheet 5 of 8 US 9,256,412 B2

500 \‘ (START)

A 4 /-510

RECEIVE A REQUEST TO DEPLOY IN A CLOUD ENVIRONMENT A NEXT
VERSION OF A SOFTWARE COMPONENT

ARE THERE DEPLOYMENT
REQUESTS OF OTHER COMPONENTS THAT ARE CURRENTLY
PROCCESSED?

NO

/-530

DETERMINE A SET OF COMPONENTS AFFECTED BY THE DEPLOYMENT
OF THE NEXT VERSION OF THE SOFTWARE COMPONENT

/540
DETERMINE SETS OF COMPONENTS AFFECTED BY DEPLOYMENT OF
THE OTHER COMPONENTS WHOSE DEPLOYMENT REQUESTS ARE
CURRENTLY PROCESSED

DOES THE
SET OF COMPONENTS AFFECTED BY
DEPLOYMENT OF THE NEXT VERSION OF THE
COMPONENT OVERLAP WITH ONE OR MORE SETS OF
COMPONENTS BY THE DEPLOYMENT OF THE
OTHER COMPONENTS?

/560

POSTPONE DEPLOYMENT OF THE NEXT VERSION OF THE SOFTWARE
COMPONENT

v 5

DEPLOY THE NEXT VERSION OF THE SOFTWARE COMPONENT IN THE
CLOUD ENVIRONMENT

i
<

END
FIG. 5

U.S. Patent Feb. 9, 2016 Sheet 6 of 8 US 9,256,412 B2

N
/610

RECEIVE A REQUEST TO DEPLOY IN A CLOUD ENVIRONMENT A NEXT
VERSION OF A SOFTWARE COMPONENT

l 620

DEPLOY THE NEXT VERSION OF THE SOFTWARE COMPONENT ON A
SUBSET OF CLUSTER NODES OF THE CLOUD ENVIRONMENT

l /~ 630

PROCESS A PORTION OF ANUMBER OF REQUESTS TO THE SOFTWARE
COMPONENT BY THE NEXT VERSION OF THE COMPONENT

l 640

PROCESS A REMAINDER OF THE NUMBER OF REQUESTS TO THE
SOFTWARE COMPONENT BY THE CURRENT VERSION OF THE
COMPONENT

l Ve 650

COMPARE ERROR RATE OF THE PORTION OF REQUESTS PROCESSED
BY THE NEXT VERSION WITH ERROR RATE OF THE REMAINDER OF
REQUESTS PROCESSED BY THE CURRENT VERSION OF THE
COMPONENT

660

DOES
DIFFERENCE BETWEEN ERROR
RATES EXCEED A PREDEFINED
THRESHOLD?

/670 /680
REPLACE THE CURRENT VERSION
DEACTIVATE THE NEXT VERSION OF THE SOFTWARE COMPONENT

OF THE SOFTWARE COMPONENT WITH THE NEXT VERSION ON THE
CLUSTER NODES

END

FIG. 6

US 9,256,412 B2

Sheet 7 of 8

Feb. 9, 2016

U.S. Patent

INIINNOAHIANE ®
JNILNNY
ovm\ 9
Y
JANLONELSVHANI
ONIHOL1VdSId
omm\ 1S3N03d

A |
1 FHNLONYLSWHNI
ONIYOLINOW
o_&\ ¢
YIINAIHOS
INIWAO1d3A
oc.~
@
HIZATYNY
AONIANIJ3A
0z~

4///11 00.

U.S. Patent Feb. 9, 2016 Sheet 8 of 8 US 9,256,412 B2

800 \

Ve NETWORK 850

PROCESSOR OUTPUT DEVICE
805 @S &i> 825

- > INPUT DEVICE

STORAGE 810 830

NETWORK
RAM 815 < > COMMUNICATOR [«
835
DATA SOURCE '\ MEDIA READER
INTERFACE 820 l/ 840
7) N 7}
835
DATA
SOURCE

860

FIG. 8

US 9,256,412 B2

1

SCHEDULED AND QUARANTINED
SOFTWARE DEPLOYMENT BASED ON
DEPENDENCY ANALYSIS

BACKGROUND

Quality management procedures for software components
are typically due before their deployment. The software com-
ponents may be tested and validated, for example, to ensure a
standard level of their quality. In a classical “on-premise”
computer system environment, software components part of
that environment and the components to be deployed, are
assembled and tested altogether. In an “on-premise” environ-
ment, the software components and the hardware systems
used to run these components are typically operated by a
single entity or single owner, for example, a customer of the
software provider. Thus, when software updates, new fea-
tures, security enhancements, and so on, are offered by the
software provider, the respective owner or customer has the
flexibility to plan and implement unilaterally the deployment
process of these updates or features. For example, the owner
may create a test replica that resembles and corresponds to the
“on-premise” computer system environment, in which test
replica the offered software components are deployed, tested,
and validated. After the components have been successfully
tested and validated in the test environment, the owner may
deploy them to the production system environment, which
operates with actual business data. Therefore, the deployment
process is planned, managed and organized by a single entity.

Unlike the “on-premise” environment, software compo-
nents in a cloud computing environment are owned, devel-
oped, and operated by various entities or owners. Also, it is
common that components developed by one entity may be
reused by others, forming a network of interdependent com-
ponents. Consequently, various components that are inter-
connected and dependent on each other may be managed by
different entities. Furthermore, it is common that the number
of dependencies among the components grows with signifi-
cant rate with the number of components available in the
cloud environment. Accordingly, in a cloud environment, it is
unfeasible to organize a deployment process as in an “on-
premise” environment, where new versions of software com-
ponents are received, tested, validated, and rolled out at once
and unilaterally by the respective owner. In the cloud envi-
ronment, components are deployed ad hoc as dictated by the
deployment requests of the different entities.

BRIEF DESCRIPTION OF THE DRAWINGS

The claims set forth the embodiments of the invention with
particularity. The invention is illustrated by way of example
and not by way of limitation in the figures of the accompa-
nying drawings in which like references indicate similar ele-
ments. The embodiments of the invention, together with its
advantages, may be best understood from the following
detailed description taken in conjunction with the accompa-
nying drawings.

FIG. 1 is a block diagram illustrating an exemplary com-
puter system landscape with applications deployed onto a
cloud infrastructure, according to one embodiment.

FIG. 2 is a flow diagram illustrating a scheduled and quar-
antined software deployment process in a cloud environment,
according to one embodiment.

FIG. 3 is a flow diagram illustrating a process to construct
an analysis of a number of dependencies among a number of
software components of a cloud environment, according to
one embodiment.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 4 is a block diagram illustrating an exemplary graph
of dependencies among software components, according to
one embodiment.

FIG. 5 is a flow diagram illustrating a process to schedule
a deployment of a next version of a software component in a
cloud environment, according to one embodiment.

FIG. 6 is a flow diagram illustrating a process to quarantine
a next version of a software component to be deployed in a
cloud environment, according to one embodiment.

FIG. 7 is a block diagram illustrating exemplary computer
system architecture for scheduled and quarantined software
deployment in a cloud environment based on dependency
analysis, according to one embodiment.

FIG. 8 is a block diagram illustrating an exemplary com-
puter system to execute computer readable instructions
related to scheduled and quarantined software deployment
based on dependency analysis, according to one embodiment.

DETAILED DESCRIPTION

Embodiments of techniques for scheduled and quarantined
software deployment based on dependency analysis are
described herein. In the following description, numerous spe-
cific details are set forth to provide a thorough understanding
of embodiments of the invention. One skilled in the relevant
art will recognize, however, that the invention can be prac-
ticed without one or more of the specific details, or with other
methods, components, materials, etc. In other instances, well-
known structures, materials, or operations are not shown or
described in detail to avoid obscuring aspects of the invention.

Reference throughout this specification to “one embodi-
ment”, “this embodiment” and similar phrases, means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, the appearances
of these phrases in various places throughout this specifica-
tion are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or character-
istics may be combined in any suitable manner in one or more
embodiments.

FIG. 1 is a block diagram illustrating an exemplary com-
puter system landscape 100 with applications deployed onto
a cloud infrastructure, according to one embodiment. A runt-
ime platform 110 may be a cloud infrastructure. A cloud
infrastructure or cloud environment may refer to the collec-
tion of hardware and software that enables essential charac-
teristics of cloud computing. The cloud infrastructure can be
viewed as containing both a physical layer and an abstraction
layer. The physical layer may consist of the hardware
resources that are necessary to support the cloud services
being provided, and typically may include server, storage,
network components, etc. In one embodiment, the hardware
resources may be owned, managed and operated by a plat-
form provider, a third party, or some combination of them.
The abstraction layer may consist of the software deployed
across the physical layer, which manifests the essential cloud
characteristics. Conceptually the abstraction layer is above
the physical layer.

In one embodiment, runtime platform 110 may be a Plat-
form-as-a-Service (PaaS). As such, runtime platform 110
may exhibit typical properties of a cloud infrastructure such
as resource pooling where the computing resources of the
cloud infrastructure provider are pooled to serve multiple
consumers using a multi-tenant model. Another characteristic
that runtime platform 110 may exhibit is elasticity that refers
to the capability of the platform to elastically provision and
release computing resources to scale commensurate with

US 9,256,412 B2

3

demand. Runtime platform 110 may also expose a metering
characteristic. Metering may refer to the capability of the
cloud infrastructure to automatically control, monitor, report
and optimize resource usage at some level of abstraction
appropriate to the type of service. Such level of abstraction
may be, for example, storage, processing, bandwidth, and
active user accounts, etc. Further, capabilities of the runtime
platform 110 are available over the network and accessible
through standard mechanisms by heterogeneous thin or thick
client platforms (e.g., mobile phones, tablets, laptops, and
workstations). Other capabilities of runtime platform 110
may include Hypertext Transfer Protocol (HTTP) load bal-
ancing, clustering, Domain Name System (DNS) as a cloud
service, etc.

Runtime platform 110 may be developed, operated and
maintained by a runtime platform provider 105. There are a
number of vendors that provide commercial runtime plat-
forms. Just as an example, SAP AG provides SAP
NetWeaver® Cloud, a Java® based Platform-as-a-Service
offering that makes it possible for partners and customers of
SAP AG to deploy and use Java® applications in a cloud
environment. Examples of other vendors of runtime plat-
forms for applications in a cloud environment include, but are
not limited to, Google Inc. that provides Google App
Engine™ platform, Salesforce.com that provides Heroku™
platform, VMware Inc. that provides Cloud Foundry™ plat-
form, Microsoft Corporation that provides Windows Azure™
platform. In one embodiment, runtime platform 110 may
include application server as a core part for building runtime
environment based on the runtime platform 110. For
example, the application server may be a Java® application
server for executing Java® based applications. In another
example, the application server may be a webserver to pro-
vide environment for execution of web based applications.
Further, runtime platform 110 may also include an operating
system and a database.

Customers, partners, or other consumers of runtime plat-
form 110 may create, develop, and customize applications or
other software components based on runtime platform 110.
As illustrated in FIG. 1, applications ‘X’ 150 of customer “1°,
applications Y’ 160 of customer “2’, applications ‘Q’ 170 of
customer ‘3’, and applications ‘Z’ 180 of customer ‘N’, are
built based on runtime platform 110. In one embodiment,
runtime platform provider 105 may also create one or more
applications built on runtime platform 110 and ofter the appli-
cations, in addition to the runtime platform 110, to customers.
For example, applications 145 are developed, managed, and
owned by runtime platform provider 105.

Typically, in cloud environment, applications or other soft-
ware components are provided and delivered for deployment
and the cloud infrastructure automatically performs the
deployment of the applications. Once deployed, the applica-
tions are available for use and can be consumed. For example,
applications ‘X’ 150, applications ‘Y’ 160, applications ‘Q’
170, applications ‘7’ 180, and applications 145 of runtime
platform provider 105, are deployed and installed on cloud
120 and may be accessed and consumed, for example, via the
Internet.

The availability of various applications in cloud 120 may
support software reusability among providers and consumers
of the software. Thus, in cloud 120, various connections,
relationships and dependencies may be formed between the
applications. For example, software components deployed on
cloud 120 are dependent on runtime platform 110 that is
managed by the runtime platform provider 105. Also, as
illustrated in FIG. 1, one or more of applications ‘X’ 150 may
depend on or refer to one or more applications 145 such as

30

40

45

4

application ‘1” 130 and application ‘K’ 140. Further, one or
more of applications Y’ 160 depend on application 2’ 135
and one or more of applications ‘X’ 150. Also, one or more of
applications ‘7’180 depend on application ‘K’ 140. Just as an
example, application ‘K’ 140 of runtime platform provider
105 may be a customer relationship management (CRM)
system. Runtime platform provider 105 may install and oper-
ate the CRM system in cloud 120 where various customers
may procure the CRM system and offer the system to their
associated consumers. For example, customer ‘1’ and cus-
tomer ‘N’ may access and use the CRM system in exchange
for a subscription fee such as a monthly fee or an annual fee,
or other form of billing such as billing based on business
transactions or volume of usage. In turn, customer ‘1° may
offer and deliver another application that depends on appli-
cation ‘K’ 140, for example, an application from applications
‘X’ 150 for credit cards validation. Similarly, customer ‘2’
may also offer an application from applications ‘Y’ 160 that
depends on or refers to an application from applications ‘X’
150.

On one hand, dependencies, relationships and connections
may be formed among applications and other software com-
ponents deployed on cloud 120. On the other hand, the soft-
ware components are owned, developed, and operated by
various entities or owners, e.g., customer ‘1°, customer ‘2’,
customer ‘3°, and customer ‘N’, and runtime platform pro-
vider 105. In case an update or another change of one or more
applications is deployed and introduced by one or more own-
ers, other software components in cloud 120 may be affected.
It is possible that a major change of an application is deliv-
ered, for example, a new release of a CRM system. Such
major change may significantly impact components that
depend on the updated application. Thus, it may be desirable
that the deployment of such major change can be planned and
organized by the affected parties.

On the other hand, it may also be common that the various
owners and providers of software components in cloud 120
frequently deliver and release updates, bug fixes, minor
improvements or other changes of the respective software
components. In such case, an automatic deployment may be
desirable for numerous minor improvements that are back-
ward compatible.

It is possible that software deployment requests are
received randomly as determined by the numerous entities.
Furthermore, the number of dependencies among the soft-
ware components in cloud 120 may grow with significant rate
with the number of components available and introduced in
cloud 120. Therefore, software deployment process in cloud
120 can be unorganized, unplanned and difficult to track. It is
also possible that defective components and components that
produce correct results are deployed to cloud 120 simulta-
neously and at the same time. Components in cloud 120 that
depend on the defective components may be negatively
impacted by affecting their proper working as well. It may be
inefficient, cumbersome or unfeasible to determine and iso-
late the source of the errors. In one embodiment, an automatic
software deployment process is implemented where deploy-
ment of software components is scheduled or planned. Fur-
ther, components are kept under quarantine until a predefined
criteria is satisfied. For the period of the quarantine compo-
nents may be monitored and tested.

FIG. 2 illustrates a scheduled and quarantined software
deployment process 200 in a cloud environment, according to
one embodiment. At 210, a request to deploy a next version of
a software component in a cloud environment from a number
of'software components of the cloud environment is received.
In one embodiment, the next version of the software compo-

US 9,256,412 B2

5

nent may be a minor improvement, a bug fix, an update, a new
implementation of the software component, or any other
change of the currently deployed software component. In one
embodiment, the next version may be a backward compatible
change of a current version of the software component. It is
possible also that the next version of the software component
has been previously deployed in the cloud environment. For
example, a request to deploy an old version again may be
received, e.g., to roll back to a previous state of the compo-
nent.

At220, an analysis of a number of dependencies among the
number of software components of the cloud environment is
received. In one embodiment, a graph that represents the
dependencies among the software components is con-
structed, where one software component references, depends
on, or is otherwise associated with another software compo-
nent. In one embodiment, the dependencies among the soft-
ware components in the cloud environment may be explicitly
declared. Just as an example, the dependencies may be explic-
itly declared through “import” or “export” statements. In
another embodiment, the dependencies may also be deter-
mined based on data related to requests or other form of
communication between the software components. To illus-
trate, it is typical that software components in the cloud
environment communicate by standard means such as HTTP
requests and responses that may be inspected, monitored and
detected by the cloud infrastructure. If component ‘A’ sends a
request to component ‘B’, this may be evidence that compo-
nent ‘A’ depends on component ‘B’. The infrastructure to
intercept, monitor, and gather data related to the communica-
tion between the software components is typically part of
standard cloud infrastructures, e.g., for the purposes of secu-
rity, resource metering, etc. Based on the gathered commu-
nication data, dependencies among the software components
are analyzed. An example process to construct an analysis of
anumber of dependencies among a number of software com-
ponents of a cloud environment is illustrated in relation to
FIG. 3.

At 230, deployment of the next version of the software
component is scheduled based on the received analysis. In
one embodiment, deployment requests may be frequently and
concurrently sent. Thus, numerous deployment requests may
be processed at the same time. To schedule the deployment of
the next version of the software component, it is determined
if there are deployment requests that are currently processed.
And also it is determined if the request to deploy the next
version of the software component may overlap with the
currently processed requests. Overlapping deployment
requests are such requests, where once the respective deploy-
ments are completed a common set of components may be
affected. Based on the dependency analysis, it is determined
whether the currently processed deployment requests overlap
with the deployment request of the next version. If there are
overlapping requests, the deployment of the next version of
the software component is postponed until such requests are
processed. Thus, the deployment process is automatically
scheduled, planned, and organized. In one embodiment,
scheduling and separating the deployment processes of soft-
ware components may facilitate identification of those soft-
ware components that may produce errors. For example,
when comparing the behavior of the software component
before and after the next version is deployed, it is possible to
exclude other deployed and updated components as the
sources or originators of the errors. An example process to
schedule the deployment of the next version of the software
component is illustrated in relation to FIG. 5.

10

30

40

45

50

55

6

At 240, the next version of the software component is
deployed in the cloud environment in accordance with the
scheduled deployment. Based on the determined order of
deployment in the schedule, the next version of the software
component is deployed so that it can be invoked, accessed,
used, and is generally available in the cloud environment.
Once deployed, the next version of the software component is
quarantined until a predefined criteria is satisfied at 250.
Although the next version of the component is deployed and
available to be used and accessed, it may be kept in isolation
and not fully utilized, e.g., for a predefined period of time or
until predefined conditions are satisfied. During the period of
the quarantine, the next version of the software component
and the set of components affected by the deployment of the
next version may be monitored, tested, and evaluated.

In one embodiment, the current version of the component
and the next version of the component may be running and
available for use in the cloud environment concurrently for
the period of the quarantine. Thus, during the quarantine, the
next version of the software component does not fully replace
the current version of the component. For example, a portion
of requests sent to the software component may be routed
through the next version of the software component and
another portion of the incoming requests may be routed
through the current version of the software component. Thus,
during the period of the quarantine, the behavior of the next
version of the component may be compared to the behavior of
the current version of the software component. Scheduling
and quarantining help to analyze whether the deployment
operation of the next version of the software component may
be related to errors occurring in the cloud environment.

At 260, the next version of the software component is
released from the quarantine upon satisfying the predefined
criteria. In one embodiment, the next version of the software
component replaces the current version of the component if
during the quarantine it is determined that the next version
works properly and as expected. Thus, all incoming requests
directed to the software component are routed through and
processed by the next version of the component.

There are various criteria that may be defined to automati-
cally release a component from quarantine or, alternatively, to
withdraw and terminate the component from the cloud envi-
ronment. In one embodiment, if the error rate of the next
version of the software component is above a predefined
threshold the next version may not be released from the
quarantine. In such a case, the next version may remain inac-
tive, may be rolled back or removed from the cloud environ-
ment. In another embodiment, the error rate of the current
version of the software component may be compared with the
error rate of the next version of the component. For example,
if the error of the next version of the software component is no
greater than the error rate of the current version of the com-
ponent, then the next version may be released from the quar-
antine. Alternatively, upon determining that the difference
between the error rate of the next version of the software
component and the error rate of the current version of the
software component is above a predefined threshold, the next
version may not be released from the quarantine. In one
embodiment, the criteria may be defined based on the
received analysis related to the number of dependencies
among the number of software components of the cloud envi-
ronment. In yet another embodiment, a component may be
manually released from quarantine or may be manually
forced and kept under quarantine.

The difference in error rates between the current version
and the next version of the software component may be only
one of the factors based on which the criteria may be defined.

US 9,256,412 B2

7

Another factor may be repetition of errors related to a cus-
tomer or a software component itself. For example, if the next
version of the software component generates errors related to
a single customer, or significantly small number of custom-
ers, then the software component may work properly and the
customer may be the source of the failures.

The deployment history related to a software component
may be a factor in defining the criteria. For example, the
number of failed deployment requests related to the same
software component, the ratio between the error rate of the
current version now (i.e. during the quarantine) and the cur-
rent version in the past, etc. In one embodiment, if errors are
related to significantly small number of customers, then the
next version of software component may still be released
from the quarantine. The business impact may be another
factor that could be used to define the criteria.

In one embodiment, another factor in defining the criteria
based on which the next version of the software component is
released from the quarantine may be related to the type and
content of the errors. For example, repetition of the same one
or more errors, expectancy or probability of occurring errors,
e.g., if produced errors are expected to be generated or not,
generation of new, unseen, or distinct type of errors by the
deployment of the next version of the software component are
generated, etc. Such factors may be used to identify and
analyze the source of the generated errors.

FIG. 3 illustrates an example process 300 to construct an
analysis of a number of dependencies between a number of
software components of a cloud environment, according to
one embodiment. At 310, data related to usage of a cloud
environment is received. The usage data may include a num-
ber of sent requests and responses among software compo-
nents of the cloud environment. The usage data may include
other data communicated or exchanged among the software
components, e.g., other forms of messages or operations. In
one embodiment, based on the usage data, dependencies
between the components in the cloud environment are deter-
mined. For example, if component ‘X’ sends request to com-
ponent Y, then component ‘X’ may depend on component
‘Y. In another embodiment, dependencies between compo-
nents may be declared in and derived from metadata of the
components.

In one embodiment, the analysis of the dependencies
between the components of the cloud environment may be
represented with a graph structure. At 320, a number of ver-
tices in a graph of dependencies are created corresponding to
the number of software components of the cloud environ-
ment. For example, for component ‘X’ avertex ‘X’ is added to
the graph of dependencies and for component “Y’, a vertex
‘Y’ is added, respectively.

At 330, based on the data related to the usage of the cloud
environment, the requests are categorized into a number of
request categories based on types of resources requested by
the corresponding requests. For example, an HTTP request to
“http://www.sap.netweavercloud.com/customers” may
access resources of type “customers”; hence the request may
be identified and categorized as a request of “customers”
category. Similarly, request to access “http://www.sap-
.netweavercloud.com/products” may be categorized as a
request of category “products”.

A resource may be data that may be identified, referenced,
and accessed, for example, by a Uniform Resource Locator
(URL) or Uniform Resource Identifier (URI). There are vari-
ous methods that may be used to categorize requests, for
example, depending on the protocol used for communication
between the software components. Examples of protocols
that may be used for communication between the software

20

25

30

40

45

50

55

60

8

components include, but are not limited to, Remote Proce-
dure Call (RPC) protocol, Common Object Request Broker
Architecture (CORBA) protocol, Remote Method Invocation
(RMI), HTTP, Simple Object Access Protocol (SOAP). To
illustrate a method that may be used to categorize requests, for
web services based on SOAP, various Web Services Descrip-
tion Language (WSDL) operations may represent different
request categories. In one embodiment, pattern recognition
algorithms may be used to categorize requests, e.g., unsuper-
vised machine learning algorithms may be applied to auto-
matically discover the relevant categories. Thus, categoriza-
tion may be based not only on the basis of single requests, but
also on the basis of group of requests.

In one embodiment, a factor in defining the criteria based
on which the next version of the software component is
released from the quarantine may be related to categories of
the requests. If errors are generated in relation to certain
categories of the requests, this may facilitate the identification
of'the source of the errors. For example, identifying the type
of resource that when requested produces errors.

At 340, a number of edges are created in the graph of
dependencies that correspond to the number of request cat-
egories. In relation to the above-mentioned example, if com-
ponent ‘X’ requests from component ‘Y’ resources of type
“customers”, then a directed edge from ‘X’ to “Y” is created
corresponding to request category “customers”. Similarly, if
component ‘X’ requests from component Y’ resources of
type “products”, then another directed edge from ‘X’ to ‘Y’ is
created request category “products”.

At 350, based on the received usage data, a number of
weights are calculated. The weights may be calculated based
on a frequency of requests in the request categories. For
example, if requests of category “customers” are sent once a
minute and requests of category “products” are sent once a
month, then respective weights may be proportionate to the
frequency of requests. At 360, the weights are associated with
corresponding edges. Thus, for example, edges from compo-
nent ‘X’ to component ‘Y’ represent how intensively and
frequently component ‘X’ requests respective resources from
component ‘Y’, e.g., “products” or “customers”. In one
embodiment, the dependencies may be specified and
weighted manually, for example, by providers of the software
components.

In one embodiment, the graph may be constructed in
response to received requests to deploy a software component
in the cloud environment. In yet another embodiment, the
graph may be constructed, stored in a memory location and
updated periodically, for example, in accordance with pre-
defined time intervals or depending on the received usage
data. The graph may represent an analysis of dependencies
between the software components. Based on such analysis,
the impact of deployment operations that possibly introduce
errors in the cloud environment may be forecasted and cal-
culated.

FIG. 4 illustrates an exemplary graph 400 of dependencies
between software components, according to one embodi-
ment. Graph 400 includes vertices corresponding to software
components ‘A’ 410, ‘B’ 420, ‘C’ 430 and ‘D’ 440. Compo-
nent ‘A’ 410 and component ‘C’ 430 depend on component
‘B’ 420. Component ‘A’ 410 and component ‘C’ 430 may
request various resources from component ‘B’ 420. Thus, a
deployment of a new version of component ‘B’ 420 may also
affect components ‘A’ 410 and ‘C’ 430. Further, component
‘C’ depends on component ‘D’ 440. Graph 400 represents a
simplified example of a dependency graph that may be gen-
erated in accordance with process 300. Graph 400 may also
include multiple edges between components ‘A’ 410, ‘B’ 420,

US 9,256,412 B2

9

‘C’ 430 and ‘D’ 440 depending on categories of requests
between the components. Also weights may be associated
with edges of graph 400, according to one embodiment.

FIG. 5 illustrates a process 500 to schedule a deployment of
a next version of a software component in a cloud environ-
ment, according to one embodiment. At 510, a request to
deploy in a cloud environment a next version of a software
component is received. At 520, it is determined whether there
are deployment requests of other components in the cloud
environment that are currently processed. If there are no such
requests, at 570, the next version of the software component
is deployed in the cloud environment.

If it is determined that there are deployment requests for
other components that are in process, a set of software com-
ponents affected by the deployment of the next version of the
software component is determined at 530. In one embodi-
ment, components affected by the deployment of one com-
ponent are components whose work may change as a result of
the deployment of this one component. To illustrate with
reference to FIG. 1, if a request to deploy a next version of
application ‘K’ 140 is received, the set of components
affected by the deployment of application ‘K’ 140 include
application ‘K’ 140 itself, one or more of applications ‘X’ 150
and one or more of applications ‘Z’ 180 that may directly
depend on application ‘K’ 140, and one or more applications
‘Y’ 160 that may indirectly depend on application ‘K’ 140.
Applications Y’ 160 are indirectly dependent on application
‘K’ if, for example, requests sent by applications ‘Y’ 160 to
applications other than application ‘K’ (e.g., applications ‘X’
450) in turn generate requests to application ‘K’.

At 540, sets of components affected by deployment of the
other components whose deployment requests are currently
processed are determined. At 550, it is determined if the set of
components affected by the deployment of the next version of
the component and one or more sets of components affected
by the currently processed deployment of the other compo-
nents overlap. In mathematical terms, a first set of compo-
nents affected by the deployment of a first component overlap
with a second set of components affected by the deployment
of'a second component if the intersection of the first and the
second set is not empty. To illustrate with reference to FI1G. 4,
a set of components affected by deployment of a next version
of component ‘B’ 430 includes component ‘B’ itself and
components ‘A’ 410 and ‘C’ 430, i.e. set ‘{A, B, C}’, since
components ‘A’ 410 and ‘C” 430 depend on component ‘B’
420. On the other hand, a set of components affected by
deployment of a next version of component ‘D’ 440 includes
component ‘D’ 440 itself and component ‘C’ 430 that
depends on component ‘D’ 440, i.e. set ‘{C, D}’. The inter-
section of set ‘{A, B, C}” and set ¢{C, D}’ is the set ‘{C}’,
which is not empty, hence, the set of components affected by
deployment of a next version of component ‘B’ 420 and the
set of components affected by deployment of a next version of
component ‘D’ 440 overlap. In such a case, it is desirable that
concurrent requests to deploy new versions of components
‘B’ 420 and ‘D’ 440 are not processed simultaneously. Oth-
erwise, it may be more difficult to distinguish which compo-
nent that is changed may have produced possible failures or
errors. For example, if components ‘B’ 420 and ‘D’ 440 are
simultaneously deployed and if an error occurs in component
‘C’ 430, it may be more difficult to analyze if the deployment
of ‘B’ 420 or ‘D’ 440 may have caused the error compared to
deploying components ‘B’ 420 and ‘D’ 440 one after the
other.

Ifitis determined that the set of components affected by the
deployment of the next version of the component and the one
or more sets of components affected by the currently pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

cessed deployment of the other components does not overlap,
at 570 the next version of the software component is deployed
in the cloud environment.

Alternatively, if it is determined that the set of components
affected by the deployment of the next version of the compo-
nent and the one or more sets of components affected by the
currently processed deployment of the other components
overlap, at 560, deployment of the next version of the soft-
ware component is postponed until the deployment of the
another component is processed. Thus, the deployment of the
next version of the software component may be postponed
until overlapping requests are processed. To illustrate with
reference to FIG. 4, if a deployment of component ‘B’ 420 is
currently processed, a request to deploy component ‘D’ 440 is
postponed until component ‘B’ 420 is deployed and released
from the quarantine. Similarly, concurrent requests to deploy
component ‘A’ 410 and component ‘B’ 420; component ‘C’
430 and component ‘B’ 420; and component ‘C* 430 and ‘D’
440 are processed one after the other, since such concurrent
requests are with overlapping sets of affected components.
Alternatively, deployment of component ‘A’ 410 and compo-
nent ‘C* 430 may be processed at the same time, since the set
of affected components of component ‘A’ 410 does not over-
lap with the set of affected components of component ‘C’ 430.
Also, requests to deploy component ‘A’ 410 and component
‘D’ 440 may be processed simultaneously.

In one embodiment, two queues may be created in which
queues software components are kept in the order of their
processing. One may be a scheduler queue that stores or refers
to components to be deployed, where the components are
kept in the order of arrival of the respective deployment
request. Another queue may be a quarantine queue that keeps
or refers to components under quarantine. To illustrate with
reference to FIG. 4, if a request to deploy component ‘B’ 420
is received, component ‘B’ 420 is added to the scheduler
queue and components ‘A’ 410, ‘B’ 420, and ‘C’ 430 are
added to the quarantine queue since components ‘A’ 410, ‘B’
420, and “C’ 430 constitute the set of components affected by
the deployment of component ‘B’ 420. If a request to deploy
component ‘D’ 440 is received next, component ‘D’ 440 is
next added to the scheduler queue and components ‘C’ 430
and ‘D’ 440 are added to the quarantine queue since compo-
nents ‘C’ 430 and ‘D’ 440 constitute the set of components
affected by the deployment of component ‘D’ 440. In accor-
dance with process 500, the deployment of component ‘D’
440 is postponed until component ‘B’ 430 is deployed and
components ‘A’ 410, ‘B’ 420, and ‘C’ 430 are released from
the quarantine. At 570, process 500 ends with deploying the
next version of the software component in the cloud environ-
ment. The deployment is automatically, scheduled, planned,
and organized.

FIG. 6 illustrates process 600 to quarantine a next version
of a software component to be deployed in a cloud environ-
ment, according to one embodiment. At 610, a request to
deploy a next version of a software component in a cloud
environment is received. In one embodiment, the software
component may be deployed and installed on one or more
than one cluster nodes, for example, virtual machines or
application servers. The cluster nodes may share computa-
tional workload to provide better overall performance of the
cloud environment. For example, requests to the software
component may be processed by different cluster nodes. The
cluster nodes on which the software component is installed
may comprise one cluster.

At 620, the next version of the software component is
deployed on a subset of cluster nodes of the cloud environ-
ment. Thus, on the subset of cluster nodes a current version of

US 9,256,412 B2

11

the software component is replaced with the next version of
the software component. On the remaining subset of cluster
nodes the current version is still running.

At 630, a portion of a number of requests to the software
component is processed by the next version of the compo-
nent. The portion of requests processed by the next version of
the component are routed through and directed to the subset
of cluster nodes on which the next version is deployed and
installed. At 640, a remainder of the number of requests to the
software component is processed by the current version of the
component.

In one embodiment, incoming requests of a subset of users,
customers or tenants of the software component may be
directed to the subset of cluster nodes with the next version of
the software component, while the rest of the users may be
still served by the current version of the software component.
For example, users whose requests are directed to the next
version may be the ones with lowest service level agreement.
In case the next version is defective, only a limited number of
users may be affected. In one embodiment, splitting and
routing incoming requests may be applied transitionally. To
illustrate with reference to FIG. 1, if a version of application
‘K’ 140 is under a quarantine and a user ‘U’ related to cus-
tomer ‘2’ is selected to be served by the version of application
‘K’ 140 that is under quarantine. If user ‘U’ sends a request
‘R1” to an application from applications ‘X’ 150, which
request ‘R1’ in turn results in a request ‘R2” application ‘K’
140 under the quarantine. Then, as illustrated in FIG. 1, since
the application from applications ‘X’ 150 depends on appli-
cation ‘K’ 140, ‘R2’ may be transitionally directed to and
processed by the version of application ‘K’ 140 that is under
quarantine.

At 650, an error rate of the portion of requests processed by
the next version of the software component is compared with
an error rate of the remainder of requests processed by the
current version of the component. At 660, it is determined
whether the difference between the error rate of the portion of
requests processed by the next version of the software com-
ponent and the error rate of the remainder of requests pro-
cessed by the current version of the component exceeds a
predefined threshold.

At 670, the next version of the software component may be
deactivated if the difference between the error rate of the next
version of the component and the error rate of the current
version of the component exceeds the predefined threshold.
The next version may be rolled back and removed from the
cloud. If the difference between the error rate of the next
version of the component and the error rate of the current
version of the component does not exceed the predefined
threshold, the current version of the software component is
replaced on the cluster nodes with the next versionat 680. The
current version of the software component is phased out and
the incoming requests are processed by the next version of the
software component.

In one embodiment, error rate of the set of components
affected by the deployment of the next version of the software
component before the quarantine of the next version may be
compared to the error rate during the quarantine. Thus, not
only the behavior of the updated software component, but
also the behavior of the components affected by the update
may be observed and analyzed.

Error rates or failures of the software component may be
identified using various methods. On example is to identify
and detect explicit error responses, e.g., HT'TP error code 404
or 503. In another embodiment, content of responses to
requests may be analyzed. Another possible approach to iden-
tify failures is based on users’ feedback. For example, issue

30

35

40

45

55

12

tracking system may be implemented in the cloud environ-
ment, where users explicitly report problems, complaints,
errors, etc. Thus, it is possible to look for issues reported for
a software component in the set of components affected by
deployment of the software component under quarantine,
where the reporter is served by the next version of the soft-
ware component.

Keeping a software component under quarantine for a long
period of time may be undesirable because, for example,
other pending deployment requests may also be delayed.
Further, customers and users may not be able to take advan-
tage from the software component until the component is
released from the quarantine. In one embodiment, the pre-
defined criteria under which a component is released from, or
respectively kept under, the quarantine may be defined based
onthe received analysis of the existing dependencies between
the software components. For example, in one embodiment,
upon successtully processing requests from the number of
identified request categories by the next version of the soft-
ware component, the next version of the software component
may be released from the quarantine. Thus, if at least one
request is processed from the identified request categories by
the next version without detecting errors or anomalies, then
the next version may be released from the quarantine.

In one embodiment, the next version of the software com-
ponent may be released from quarantine upon successfully
processing at least one request from each request category
that is associated with the software component. In a further
embodiment, the next version of the software component may
be released from the quarantine upon successfully processing
a predefined number of requests per request category by the
next version. Thus, software components that process a
higher number of requests may be released faster from the
quarantine compared to component that process a lower num-
ber of requests. Highly loaded software component may
quickly process required number of requests from the
required request categories.

In one embodiment, request categories that occur rarely,
for example once a month, may be disregarded and excluded
from the criteria. For example, edges representing such cat-
egories may be removed from the graph of dependencies.
Thus, keeping software components under the quarantine for
an undesirable period of time may be avoided.

Quarantining software components affected by deploy-
ment of a next version of a software component, may facili-
tate the process of identifying errors that occur in relation to
or are caused by the deployed next version. It may be com-
pared if errors occur in the set of affected components before
and after the deployment of the next version.

FIG. 7 illustrates exemplary computer system architecture
700 for scheduled and quarantined software deployment in a
cloud environment based on dependency analysis, according
to one embodiment. Monitoring infrastructure 710 to receive,
monitor and intercept communication among the software
components of the cloud environment. Monitoring infrastruc-
ture 710 tracks usage data of the cloud environment, for
example, for billing, security, and other purposes. In one
embodiment, the monitoring infrastructure 710 monitors
exchanged HTTP requests and responses between software
components. In one embodiment, usage or communication
data may be gathered from runtime environment of the soft-
ware components such as runtime environment 740 of a com-
ponent whose next version is to be deployed. Runtime envi-
ronment of components 740 may be a Java runtime
environment such as Java EE. Usage or communication data
may be gathered from runtime environments of software
components in the cloud environment. For example, error log

US 9,256,412 B2

13

data of components other than the component whose next
version is to be deployed may be relevant as well.

Based on the monitored and received usage data, depen-
dency analyzer 720 generates a statistical analysis of a num-
ber of dependencies among the software components of the
cloud environment. In one embodiment, dependency ana-
lyzer 720 generates a graph of dependency in accordance with
process 300 illustrated in FIG. 3.

In one embodiment, upon receiving a request to deploy a
next version of a software component, deployment scheduler
730 schedules the deployment of the next version of the
software component based on the generated dependency
analysis among components in the cloud environment.
Deployment scheduler 730 may plan deployment operations
in accordance with process 500 illustrated in FIG. 5. The next
version of the software component is deployed in the cloud
environment in accordance with the scheduled deployment.

Request dispatching infrastructure 750 dispatches incom-
ing requests. In one embodiment, request dispatching infra-
structure 750 may include a load balancer that is part of
standard cloud infrastructures. The load balancer may man-
age workload by dispatching requests to cluster nodes with
lower workload. Request dispatching infrastructure 750 may
also include inbound and outbound request dispatcher that
may direct HTTP request inside and outside the cloud envi-
ronment, respectively.

In one embodiment, during the quarantine of the next ver-
sion of the software component, a portion of incoming
requests (e.g., 10%) to the software component is dispatched
to the next version of the software component by request
dispatching infrastructure 750. Another portion of incoming
requests to the component (e.g., 90%) is dispatched to the
current version of the software component by request dis-
patching infrastructure 750.

Some embodiments of the invention may include the
above-described methods being written as one or more soft-
ware components. These components, and the functionality
associated with each, may be used by client, server, distrib-
uted, or peer computer systems. These components may be
written in a computer language corresponding to one or more
programming languages such as, functional, declarative, pro-
cedural, object-oriented, lower level languages and the like.
They may be linked to other components via various appli-
cation programming interfaces and then compiled into one
complete application for a server or a client. Alternatively, the
components may be implemented in server and client appli-
cations. Further, these components may be linked together via
various distributed programming protocols. Some example
embodiments of the invention may include remote procedure
calls being used to implement one or more of these compo-
nents across a distributed programming environment. For
example, a logic level may reside on a first computer system
that is remotely located from a second computer system con-
taining an interface level (e.g., a graphical user interface).
These first and second computer systems can be configured in
a server-client, peer-to-peer, or some other configuration. The
clients can vary in complexity from mobile and handheld
devices, to thin clients and on to thick clients or even other
servers.

The above-illustrated software components are tangibly
stored on a computer readable storage medium as instruc-
tions. The term “computer readable storage medium” should
be taken to include a single medium or multiple media that
stores one or more sets of instructions. The term “computer
readable storage medium” should be taken to include any
physical article that is capable of undergoing a set of physical
changes to physically store, encode, or otherwise carry a set

10

15

20

25

30

35

40

45

50

55

60

65

14

of instructions for execution by a computer system which
causes the computer system to perform any of the methods or
process steps described, represented, or illustrated herein.
Examples of computer readable storage media include, but
are not limited to: magnetic media, such as hard disks, floppy
disks, and magnetic tape; optical media such as CD-ROMs,
DVDs and holographic devices; magneto-optical media; and
hardware devices that are specially configured to store and
execute, such as application-specific integrated circuits
(“ASICs”), programmable logic devices (“PLDs”) and ROM
and RAM devices. Examples of computer readable instruc-
tions include machine code, such as produced by a compiler,
and files containing higher-level code that are executed by a
computer using an interpreter. For example, an embodiment
of the invention may be implemented using Java, C++, or
other object-oriented programming language and develop-
ment tools. Another embodiment of the invention may be
implemented in hard-wired circuitry in place of, or in com-
bination with machine readable software instructions.

FIG. 81s ablock diagram of an exemplary computer system
800. The computer system 800 includes a processor 805 that
executes software instructions or code stored on a computer
readable storage medium 855 to perform the above-illus-
trated methods of the invention. The computer system 800
includes a media reader 840 to read the instructions from the
computer readable storage medium 855 and store the instruc-
tions in storage 810 or in random access memory (RAM) 815.
The storage 810 provides a large space for keeping static data
where at least some instructions could be stored for later
execution. The stored instructions may be further compiled to
generate other representations of the instructions and
dynamically stored in the RAM 815. The processor 805 reads
instructions from the RAM X15 and performs actions as
instructed. According to one embodiment of the invention,
the computer system 800 further includes an output device
825 (e.g., a display) to provide at least some of the results of
the execution as output including, but not limited to, visual
information to users and an input device 830 to provide a user
or another device with means for entering data and/or other-
wise interact with the computer system 800. Each of these
output devices 825 and input devices 830 could be joined by
one or more additional peripherals to further expand the capa-
bilities of the computer system 800. A network communicator
835 may be provided to connect the computer system 800 to
a network 850 and in turn to other devices connected to the
network 850 including other clients, servers, data stores, and
interfaces, for instance. The modules of the computer system
800 are interconnected via a bus 845. Computer system 800
includes a data source interface 820 to access data source 860.
The data source 860 can be accessed via one or more abstrac-
tion layers implemented in hardware or software. For
example, the data source 860 may be accessed by network
850. In some embodiments the data source 860 may be
accessed via an abstraction layer, such as, a semantic layer.

A data source is an information resource. Data sources
include sources of data that enable data storage and retrieval.
Data sources may include databases, such as, relational,
transactional, hierarchical, multi-dimensional (e.g., OLAP),
object oriented databases, and the like. Further data sources
include tabular data (e.g., spreadsheets, delimited text files),
data tagged with a markup language (e.g., XML data), trans-
actional data, unstructured data (e.g., text files, screen scrap-
ings), hierarchical data (e.g., data in a file system, XML data),
files, a plurality of reports, and any other data source acces-
sible through an established protocol, such as, Open Data-
Base Connectivity (ODBC), produced by an underlying soft-
ware system (e.g., ERP system), and the like. Data sources

US 9,256,412 B2

15

may also include a data source where the data is not tangibly
stored or otherwise ephemeral such as data streams, broadcast
data, and the like. These data sources can include associated
data foundations, semantic layers, management systems,
security systems and so on.

In the above description, numerous specific details are set
forth to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize,
however that the invention can be practiced without one or
more of the specific details or with other methods, compo-
nents, techniques, etc. In other instances, well-known opera-
tions or structures are not shown or described in details to
avoid obscuring aspects of the invention.

Although the processes illustrated and described herein
include series of steps, it will be appreciated that the different
embodiments of the present invention are not limited by the
illustrated ordering of steps, as some steps may occur in
different orders, some concurrently with other steps apart
from that shown and described herein. In addition, not all
illustrated steps may be required to implement a methodology
in accordance with the present invention. Moreover, it will be
appreciated that the processes may be implemented in asso-
ciation with the apparatus and systems illustrated and
described herein as well as in association with other systems
not illustrated.

The above descriptions and illustrations of embodiments
of the invention, including what is described in the Abstract,
is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illustra-
tive purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognize. These modifications can be made
to the invention in light of the above detailed description.
Rather, the scope of the invention is to be determined by the
following claims, which are to be interpreted in accordance
with established doctrines of claim construction.

What is claimed is:

1. A computer implemented method to automatically
deploy a next version of a software component from a plural-
ity of software components in a cloud environment, the
method comprising:

receiving, at a computer, a request to deploy the next ver-

sion of the software component in the cloud environ-
ment;

receiving, at the computer, a dependency analysis of a

plurality of dependencies among the plurality of soft-
ware components of the cloud environment, wherein
receiving the dependency analysis further comprises:
receiving data related to the requests for communication
among the plurality of software components;
based on the received data, categorizing the requests into
a plurality of request categories based on types of
resources requested by the corresponding requests;
and
determining frequency of requests by the request cat-
egories among the plurality of software components;
the computer, postponing a deployment of the next version
of the software component based on the dependency
analysis until a currently processed deployment of
another software component is processed when a first set
of affected software components affected by deploy-
ment of the next version of the software component
overlaps with a second set of affected software compo-
nents affected by the currently processed deployment of
the another software component;

20

25

30

35

40

45

50

65

16

deploying, from the computer, the next version of the soft-
ware component in the cloud environment in accordance
with the scheduled deployment;
the computer, quarantining the next version of the software
component until a predefined criteria is satisfied;

comparing an error rate of responses generated by a current
version of the software component with the error rate of
responses generated by the next version of the software
component; and

releasing the next version of the software component from

the quarantine upon determining that a difference
between the error rate of the next version of the software
component and the error rate of the current version soft-
ware component is below a predefined threshold.

2. The method of claim 1, wherein quarantining the next
version of the software component further comprises:

running a current version of the software component and

the next version of the software component concurrently
until the next version is released from the quarantine,
and

processing a portion of a plurality of requests to the soft-

ware component by the next version of the software
component.

3. The method of claim 1 further comprising:

upon satisfying the predefined criteria, releasing the ver-

sion of the software component from the quarantine.

4. The method of claim 1 further comprising:

upon successfully processing requests from the plurality of

request categories by the next version of the software
component, releasing the next version of the software
component from the quarantine.

5. A computer system to automatically deploy in a cloud
infrastructure a next version of a software component from a
plurality of software components of the cloud infrastructure,
the system including:

at least one processor and memory to execute program

code, which when executed cause the computer to per-
form operations comprising:

receiving a plurality of requests between the plurality of

software components, wherein based on the received
plurality of requests an analysis of a plurality of depen-
dencies among the plurality of software components of
the cloud infrastructure is generated, wherein the analy-
sis of the plurality of dependencies further comprises:
receiving data related to the requests for communication
among the plurality of software components;
based on the received data, categorizing the requests into
a plurality of request categories based on types of
resources requested by the corresponding requests;
and
determining frequency of requests by the request cat-
egories among the plurality of software components;
postponing deployment of the next version of the software
component based on the received analysis until a cur-
rently processed deployment of another software com-
ponent is processed when a first set of affected software
components affected by deployment of the next version
of the software component overlaps with a second set of
affected software components affected by the currently
processed deployment of the another software compo-
nent;
deploying the next version of the software component onto
the cloud infrastructure in accordance with the sched-
uled deployment;

quarantining the next version of the software component

until a predefined criteria is satisfied;

US 9,256,412 B2

17

comparing an error rate of responses generated by a current
version of the software component with the error rate of
responses generated by the next version of the software
component; and

releasing the next version of the software component from

the quarantine upon determining that a difference
between the error rate of the next version of the software
component and the error rate of the current version soft-
ware component is below a predefined threshold.

6. The system of claim 5, wherein the operations further
comprising:

dispatching a portion of a plurality of requests to the soft-

ware component to the next version of the software
component.

7. The system of claim 5, wherein the operations further
comprising:

upon satisfying a predefined criteria, releasing the next

version of the software component from the quarantine,
and

dispatching incoming requests to the software component

to the next version of the software component.

8. The system of claim 5, wherein the operations compris-
ing:

upon successtully processing requests from the plurality of

request categories by the next version of the software
component, releasing the next version of the software
component from the quarantine.

9. A non-transitory computer readable medium storing
instructions thereon, which when executed by a processor
cause a computer system to:

receive a request to deploy a next version of the software

component from a plurality of software components in a
cloud environment;

receive a dependency analysis of a plurality of dependen-

cies among the plurality of software components of the

cloud environment, wherein the dependency analysis is

generated by:

receiving data related to a plurality of requests between
the software components;

based on the received data, categorizing the plurality of
requests into a plurality of request categories based on
types of resources requested by the corresponding
plurality of requests; and

10

15

20

25

30

35

18

determining frequency of requests by the request cat-
egories among the plurality of software components;
postpone deployment of the next version of the software
component based on the dependency analysis until a
currently processed deployment of another software
component is processed when a first set of affected soft-
ware components affected by deployment of the next
version of the software component overlaps with a sec-
ond set of affected software components affected by the
currently processed deployment of the another software
component;
deploy the next version of the software component in the
cloud environment in accordance with the scheduled
deployment;

quarantine the next version of the software component

until a predefined criteria is satisfied;

comparing an error rate of responses generated by a current

version of the software component with the error rate of
responses generated by the next version of the software
component; and

releasing the next version of the software component from

the quarantine upon determining that a difference
between the error rate of the next version of the software
component and the error rate of the current version soft-
ware component is below a predefined threshold.

10. The computer readable medium of claim 9, wherein
quarantining the next version of the software component fur-
ther comprises:

running a current version of the software component and

the next version of the software component concurrently
until the next version is released from the quarantine,
and

processing a portion of a plurality of requests to the soft-

ware component by the next version of the software
component.

11. The computer readable medium of claim 9 further
comprising:

upon satisfying the predefined criteria, releasing the ver-

sion of the software component from the quarantine.

#* #* #* #* #*

